Автоматизированный программный комплекс оперативного мониторинга параметров облачного покрова, осадков, опасных явлений погоды и подстилающей поверхности в пределах круга обзора радиометра SEVIRI с геостационарных метеоспутников серии MSG

Е.В. Волкова, А.В. Кухарский

ФГБУ «НИЦ «Планета» 123242, Москва, Большой Предтеченский пер., д.7. E-mail: <u>quantocosa@bk.ru</u>, <u>kukharsky@planet.iitp.ru</u>

Информация об облачности, осадках, опасных явлениях погоды и состоянии подстилающей поверхности необходима во многих сферах человеческой деятельности: в сельском хозяйстве, строительстве, для нужд авиации, прогноза погоды и стихийных изменений бедствий, моделирования климатических И др. Наземная метеонаблюдений, включая наблюдения метеостанциях, метеорологических на радиолокаторов и грозопеленгаторов, размещена по территории Земного шара крайне неравномерно. Поэтому спутниковый мониторинг приобретает всё большее значение. Информация с геостационарных спутников обеспечивает наблюдения с высокой периодичностью (15 мин) за территорией с радиусом ~70° (без приполярных областей).

В ФГБУ «НИЦ «Планета» создан универсальный автоматизированный программный комплекс (АПК) «SEVIRIncepfullfraguni» (результат модернизации и объединения АПК «ETR-plus» [3], «SEVIRI-Europe» [4] и «SEVIRI-full» [1]), позволяющий автоматически в круглосуточном режиме дешифрировать и классифицировать по косвенным признакам пороговым методом параметры облачного покрова, осадков и опасных явлений погоды (ОЯП), рассчитывать характеристики подстилающей поверхности для полного круга обзора радиометра SEVIRI с геостационарных метеоспутников серии MSG, а также валидировать параметры облачности, осадков и ОЯП данными наземных наблюдений и климатическими оценками и выдавать автоматическое заключение о качестве классификации (см. рис. 1).

В основе АПК лежит оригинальная авторская Комплексная пороговая методика (КПМ) [1], которая использует измерения SEVIRI/Meteosat в каналах 1, 2, 4-10 (λ =0,6, 0,9, 3,9, 6,2, 7,3, 8,7, 9,7, 10,8 и 12,0 мкм), а также их разности. Дополнительно к ним – прогностические поля (NCEP GFS, пространственное разрешение 0,5°, сроки 0, 6, 12 и 18 ч ВСВ, заблаговременность 0 и 6 ч) о вертикальном распределении температуры воздуха в атмосфере (включая температуру воздуха на 17 барических уровнях (Та_{ррр}), приземную температуру воздуха (Та_{призем}) и температуру подстилающей поверхности (Т_{пп})) и атмосферном давлении на уровне моря (р_{ур.моря}), цифровую карту рельефа (gtopo30).

Пороговые значения предикторов рассчитываются для каждого пиксела спутникового изображения с помощью эмпирических авторских функций от высоты места над уровнем моря (h_{ref}), высоты солнца (h_o), номера календарного дня от начала года (datd), Та_{призем}, Т_{пп}, максимальной в атмосферном столбе температуры воздуха (Ta_{max}) и приведённой к уровню моря ($Ta_{yp.моря}$), географической широты (ϕ) и др. (см. табл. 1). В КПМ соблюдается строгий порядок выполнения этапов классификации, т.к. параметры облачности, осадков и ОЯП, полученные на ранних этапах классификации, используются в дальнейшем (см. рис. 2). Выделение классов/градаций происходит по нарастающей – от отсутствия явления к его максимальному значению.

Выходные продукты АПК по облачности, осадкам, ОЯП и подстилающей поверхности получаются в оперативном режиме для каждого срока спутникового наблюдения в виде числовых матриц (точные значения или коды классов/градаций) и соответствующих им карт (рсх-файлы) с исходным разрешением спутниковой информации для полного круга обзора (угол спутникового визирования не более 7,7°) или его части, например, для региона «Европа и Россия», а также для его фрагмента с высоким разрешением на регулярной сетке 0.025° (1.5°), например, для регионов «ЕТР» (европейская территория России) и «Западная Сибирь». Для характеристик подстилающей поверхности также строятся монтажи для светлого времени суток. Для параметров облачности и осадков дополнительно рассчитываются «климатические» оценки: за период времени (сутки, месяц, год) накапливаются суммы осадков и рассчитываются средние значения метеоявлений, макро- и микрофизических характеристик облачности, а также проводится ежесуточная и ежемесячная валидация точности классификации результатами наземных наблюдений на метеостанциях и климатическими оценками (только для фрагментов спутникового изображения на регулярной сетке). Примеры некоторых выходных продуктов см. на рис. 3-12.

Для обеспечения оперативного получения потребителями информационных продуктов создано программное обеспечение, позволяющее на регулярной основе получать согласованный набор из нескольких наименований продуктов с разной периодичностью (от 15 мин) и просматривать в режиме слайд-шоу непосредственно на мониторе дежурного синоптика для анализа развития метеоявления и составления краткосрочного прогноза.

На примере архива синхронных спутниковых и наземных метеонаблюдений за 2017-2020 гг. была проведена валидация выходных продуктов АПК по облачности и осадкам, полученных по данным SEVIRI/Meteosat-11 и -8 (точки стояния 0° и 41,5° в.д.) результатами наземных наблюдений на метеостанциях и климатической информацией [5].

Подавляющее большинство параметров облачности, осадков и ОЯП детектируется с точностью ± 1 класс/градация в 70-95 % случаев и ± 2 класса/градации в 80-100 % случаев (в зависимости от детектируемого параметра, сезона, региона, времени суток и др.). Грубых ошибок выявлено не было. Точность детектирования может немного ухудшаться: при низком положении солнца и в тёмное время суток, в холодный период года, при наличии температурной инверсии или сильного приземного выхолаживания, при наличии снежно-ледового покрова, на границе суша-вода и над водоёмами с большими амплитудами температур относительно суши, с увеличением высоты места над уровнем моря, при больших углах спутникового визирования, с уменьшением линейного размера и интенсивности метеоявления, на краях облачного покрова, в случаях с многослойной, мелкой кучевообразной и оптически тонкой перистой и высокослоистой облачностью. Точность классификации для некоторых метеопараметров достаточно сильно зависит от точности прогностической информации.

Независимая валидация, проведённая в Центрально-Чернозёмном УГМС и Вологодском ЦГМС (с июня 2019 г. по май 2020 г.), показала [2, 5], что средняя за год успешность по детектированию зон осадков, в т.ч. интенсивности и типа осадков, составляет не менее 90%, для зон гроз и града — около 99 %, для типа облачности — не менее 80 %. Различия между суточными и сезонными максимумами и минимумами, а также для разных метеостанций обычно не превышают нескольких процентов. Решением ЦМКП от 6.11.2020 г. технология рекомендована к внедрению в оперативную работу ФГБУ «НИЦ «Планета», а выходная продукция — в оперативную работу Центрально-Чернозёмного УГМС и Вологодского ЦГМС в качестве вспомогательного и консультативного метода.

Таким образом, выходные продукты КПМ не уступают по точности зарубежным аналогам, получаемым, например, в рамках проектов SAF NWC и SAF CM EUMETSAT (http://www.eumetsat.int), и, в основном, удовлетворяют предъявляемым к ним пользователями требованиям, поэтому могут быть предложены к использованию в качестве дополнения к наземным метеонаблюдениям для мезомасштабного и субглобального мониторинга облачного покрова и его параметров как в оперативном режиме, так и для климатических исследований. Время обработки одного срока спутникового наблюдения, включая предварительную подготовку и классификацию, для полного круга обзора не превышает 1 мин.

Литература

- 1. Волкова Е.В. Использование комплексной пороговой методики для климатических исследований параметров облачного покрова, осадков и опасных явлений погоды по данным SEVIRI/METEOSAT-9 // Современные проблемы дистанционного зондирования Земли из космоса. 2012. Т. 9. № 2. С. 200-206.
- 2. Волкова Е.В., Кухарский А.В. Автоматизированная технология диагноза параметров облачного покрова, осадков и опасных явлений погоды для Европейской территории России по данным радиометра SEVIRI с геостационарных метеоспутников серии Meteosat MSG // Гидрометеорологические исследования и прогнозы. 2020. № 4 (378). С. 43-62. doi 10.37162/2618-9631-2020-4-43-62.
- 3. Волкова Е.В., Кухарский А.В. Специализированный программный комплекс получения и валидации спутниковых оценок параметров облачности, осадков, подстилающей поверхности и приземного слоя воздуха для Европейской территории России // Материалы 17й Всероссийской открытой конференции "Современные проблемы дистанционного зондирования Земли из космоса", 11-15 ноября 2019 г., ИКИ РАН, Москва, 2019. С. 161. doi 10.21046/17DZZconf-2019а.
- 4. Волкова Е.В., Кухарский А.В. Специализированный программный комплекс получения оценок параметров облачности и осадков по данным радиометра SEVIRI с геостационарного метеоспутника Meteosat (0° в.д.) для европейской территории России // Информационные технологии в дистанционном зондировании Земли RORSE 2018 (Электронный сборник статей 16й конференции, 12-16 ноября 2018 г., Москва, Россия). С. 248-255. Doi 10.21046/rorse2018.248.
- 5. Волкова Е.В., Кухарский А.В.. Санникова Г.В., Павлов И.Н. Валидация автоматизированной технологии диагноза параметров облачного покрова, осадков и опасных явлений погоды по данным радиометра SEVIRI с геостационарных метеоспутников серии Meteosat MSG // Информационный сборник. результаты испытаний новых и усовершенствованных технологий, моделей и методов гидрометеорологических прогнозов. 2021. № 48. С. 72-88.

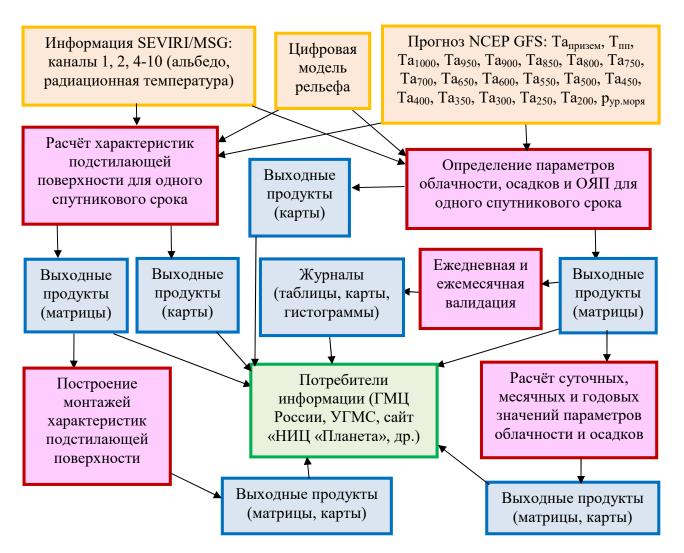


Рис. 1. Технологическая схема работы АПК «SEVIRIncepfullfraguni»

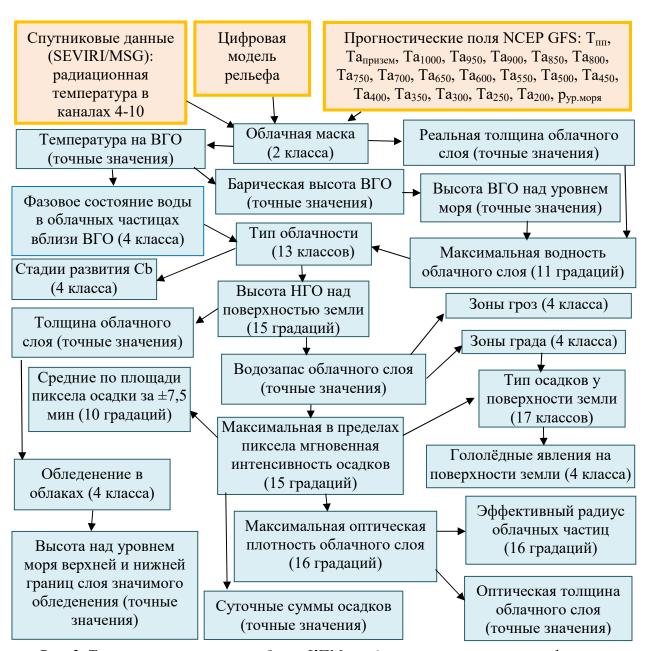


Рис. 2. Технологическая схема работы КПМ при детектировании и классификации параметров облачного покрова, осадков и ОЯП

Таблица. Детектируемые КПМ по данным SEVIRI/Meteosat параметры облачного покрова, осадков и ОЯП, их классы/градации и необходимые для классификации

предикторные характеристики АПК «SEVIRIncepfulluni»

преоикторные характеристики АПК «SEVIRIncepjulluni» Параметр Обозна- Карактеристики АПК «Межеристики» Продиметр					
(ед. измер.)	чение	Классы/градации	Предикторы		
Облачная маска	КОО	облачно, безоблачно	$\begin{array}{c} T_{108}, (T_{39}\text{-}T_{108}), (T_{120}\text{-}T_{87}), \\ (T_{108}\text{-}T_{120}), (T_{73}\text{-}T_{62}), h_{\text{ref}}, \\ T_{\text{пп}}, T_{a_{\text{призем}}}, T_{a_{\text{ур.моря}}}, h_{o} \end{array}$		
Температура ВГО (К, °С)	Твго	точные значения или градации	$T_{108}, T_{120}, (T_{108}\text{-}T_{120}), \ (T_{39}\text{-}T_{108}), h_{\text{ref}}, Ta_{y_{\text{р.Моря}}}, \ h_{o}$		
Барическая высота ВГО (гПа)	$ph_{\mathrm{B\GammaO}}$	точные значения или градации	$T_{\text{BFO}}, p_{\text{ур.моря}}, Ta_{\text{max}}, h_{\text{ref}}, \phi$		
Высота ВГО над уровнем моря (м, км)	h _{BГО}	точные значения или градации	$ph_{\mathrm{B\Gamma O}},p_{\mathrm{ур.моря}},h_{\mathrm{ref}},\phi,T_{\mathrm{пп}},\ Ta_{\mathrm{призем}}$		
Реальная толщина облачного слоя (м, км)	dHcl	точные значения или градации	$T_{108}, T_{120}, p_{y_{\text{р.моря}}}, h_{\text{ref}}, \phi, \ Ta_{\text{max}}, T_{\text{пп}}, Ta_{\text{призем}}$		
Фазовое состояние воды в облачных частицах на ВГО	faza	кристаллические, водяные, смешанные: жидк.>крист., жидк.<крист.	$T_{108}, (T_{108}\text{-}T_{120}), (T_{39}\text{-}T_{108}), (T_{120}\text{-}T_{87}), T_{B\Gamma O}, T_{09,MOPB}, h_o$		
Максимальная водность облачного слоя (г/м³)	W_{max}	0-0,1, 0,1-0,2, 0,2-0,3 0,3-0,4, 0,4- 0,5, 0,5-0,7, 0,7-1, 1-3, 3-5, 5-10, >10	$\begin{array}{c} T_{108}, (T_{39}\text{-}T_{108}), (T_{120}\text{-}T_{87}), \\ (T_{108}\text{-}T_{120}), (T_{73}\text{-}T_{62}), \\ h_{B\Gamma O}, h_{ref}, dHcl, T_{nn}, \\ Ta_{npu3em}, Ta_{yp.моря}, h_o, \\ Ta_{850}, Ta_{750}, Ta_{600}, Ta_{450}, \\ Ta_{400}, Ta_{350}, Ta_{300}, Ta_{250} \end{array}$		
Тип облачности	cltyp	CiCs, CuSc, Cbinc, Cbcalv, NsCb, Cbcap, Cb+Ci, AcCu, As, CuNsCb+As, AcAs+Ci, St, Cs+As+Ns	$T_{108}, (T_{108}\text{-}T_{120}), (T_{120}\text{-}T_{87}), (T_{87}\text{-}T_{97}), (T_{73}\text{-}T_{62}), $ $h_{\mathrm{B}\Gamma\mathrm{O}}, h_{\mathrm{ref}}, \mathrm{dHcl}, T_{\mathrm{m}}, $ $Ta_{\mathrm{призем}}, Ta_{\mathrm{ур.моря}}, h_{\mathrm{o}}, \phi, $ faza, W_{max}		
Стадии развития Cb	СЪ	без Сb, небольшие Сb, максимальное развитие Сb, начало распада Сb	cltyp, W _{max} , Та _{ур.моря} , h _o , (Т ₁₀₈ -Т ₁₂₀), (Т ₃₉ -Т ₁₀₈), (Т ₈₇ -Т ₉₇), (Т ₇₃ -Т ₆₂)		
Высота НГО над поверхностью земли (км)	h _{HITO}	<0,5, 0,5-1, 1-1,5, 1,5-2, 2-2,5, 2,5-3, 3-3,5, 3,5-4, 4-4,5, 4,5-5, 5-5,5, 5,5-6, 6-6,5, 6.5-7, >7	cltyp, T_{108} , $(T_{108}$ - $T_{120})$, W_{max} , $h_{B\Gamma O}$, h_{ref} , dHcl, $T_{\Pi\Pi}$, $T_{a_{\Pi P U 3 e M}}$, $T_{a_{yp. Mop 9}}$		
Толщина облачного слоя (км)	dH	точные значения или градации	cltyp, $h_{B\Gamma O}$, h_{ref} , dHcl, $h_{H\Gamma O}$		
Водозапас (кг/м2)	SW	точные значения или градации	W _{max} , dHcl		
Град	hail	без града, град в облаках/слабый, умеренный, сильный град	faza, cltyp, W_{max} , SW, $h_{B\Gamma O}$, h_{ref} , h_o , ϕ , $Ta_{yp.моря}$, T_{108} , $(T_{108}\text{-}T_{120})$, $(T_{39}\text{-}T_{108})$, $(T_{87}\text{-}T_{97})$, $(T_{73}\text{-}T_{62})$, datd		
Гроза	thund	без грозы, слабая, умеренная, сильная гроза	faza, cltyp, W_{max} , SW, $h_{B\Gamma O}$, h_{ref} , h_o , ϕ , $Ta_{yp.моря}$, T_{108} , $(T_{87}$ - $T_{97})$, $(T_{73}$ - $T_{62})$, datd		
Максимальная мгновенная интенсивность осадков (мм/ч)	I_{max}	0, <0,5, 0,5-1, 1-2, 2-3, 3-5, 5-7,5, 7,5-10, 10-15, 15-25, 25-35, 35-50, 50-75, 75-100, >100	faza, cltyp, W_{max} , SW, $h_{B\Gamma O}$, h_{ref} , h_o , ϕ , $Ta_{yp.мopя}$, datd, $T_{B\Gamma O}$, T_{mi} , $Ta_{призем}$, dHcl, $h_{H\Gamma O}$		
Средняя за 15 мин интенсивность осадков (мм)	I_{cp15}	0, 0-0,5, 0,5-1, 1-2, 2-3, 3-4, 4-6, 6- 9, 9-12,5, >12,5	I_{max}		

Тип осадков у поверхности земли	prtyp	без осадков, слаб., умерен. и сильн. снег, слаб./умер. и умер./сильн. мокрый снег/снег+дождь, слаб./умер. и умер./сильн. ледяной дождь, морось, слаб., умерен. и сильн. дождь, сильн. ливень, слаб./умер. и умер./сильн. снежная крупа, слаб./умер. и умер./сильн. град у земли	$\begin{split} I_{\text{max}}, & \text{hail, } h_{\text{BFO}}, h_{\text{ref}}, T_{\text{III}}, \\ & Ta_{\text{призем}}, T_{\text{BFO}}, \text{dHcl,} \\ & Ta_{900}, Ta_{850}, Ta_{800}, Ta_{750}, \\ & Ta_{700}, Ta_{650}, Ta_{600}, Ta_{550}, \\ & Ta_{500}, Ta_{450}, Ta_{400} \end{split}$
Гололёд/гололедица на поверхности земли	slip	без гололёда, слабый, умеренный, сильный гололёд	prtyp, I _{max}
Обледенение	icing	без обледенения, слабое, умеренное, сильное обледенение	W_{max} , $T_{B\Gamma O}$, dH , $h_{B\Gamma O}$
Высота над уровнем моря (км) верхней и нижней границ слоя значимого обледенения	ВГ, НГ	точные значения или градации	icing, $p_{y_{p.Mops}}$, $Ta_{y_{p.Mops}}$, ϕ , h_{ref}
Оптическая плотность облачного слоя	COD	<5, 5-10, 10-15, 15-20, 20-25, 25- 30, 30-35, 35-40, 40-45, 45-50, 50- 55, 55-60, 60-65-, 65-70, 70-75, >75	$T_{108},W_{max},I_{max},cltyp,$
Оптическая толщина облачного слоя	COT	точные значения или градации	COD, dHcl
Эффективный радиус облачных частиц (мкм)	$R_{ m eff}$	<2,5, 2,5-5, 5-7,5, 7,5-10, 10-12,5, 12,5-15, 15-17,5, 17,5-20, 20-22,5, 22,5-25, 25-27,5, 27,5-30, 30-32,5, 32,5-35, 35-37,5 > 37,5	I_{max} , prtyp, faza, COD, $h_{H\Gamma O}$
Суточные суммы осадков (мм)	ΣI_{cyt}	точные значения или градации	I _{max} , datd
Месячные суммы осадков (мм)	$\Sigma I_{ ext{mec}}$	точные значения или градации	ΣI_{cyr}
Годовые суммы осадков (мм)	$\Sigma I_{ m rog}$	точные значения или градации	$\Sigma I_{ m rog}$
Индекс вегетации	NDVI	точные значения или градации	A_{06}, A_{09}
Степень проективного покрытия растительностью	b	точные значения или градации	NDVI
Излучательная способность подстилающей поверхности	e	точные значения или градации	NDVI или b
Листовой индекс	LAI	точные значения или градации	NDVI

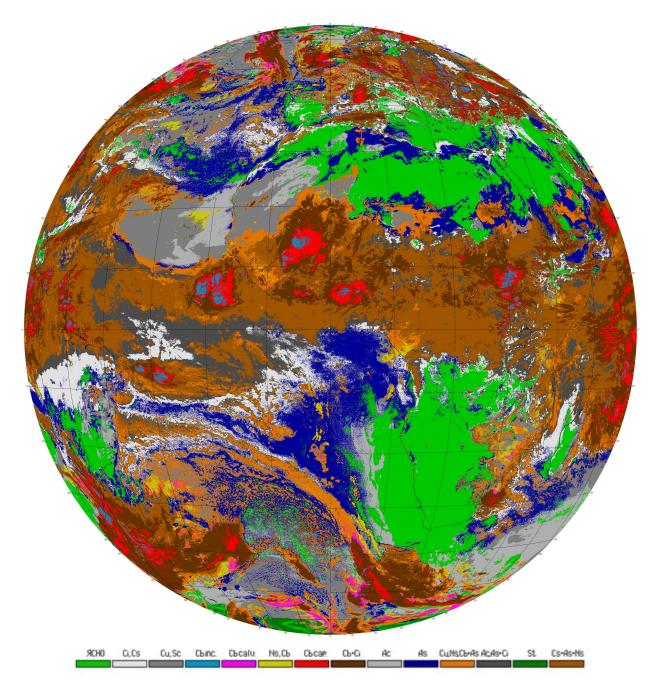


Рис. 3. Классификация облачности по типам (облачный анализ BMO) (SEVIRI/Meteosat-11, 18.06.2020, 11:45 BCB)

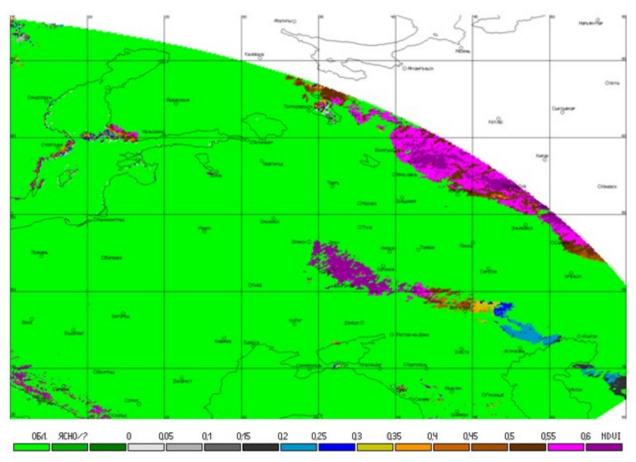


Рис. 4. Индекс вегетации (NDVI), монтаж для светлого времени суток (SEVIRI/Meteosat-11, 18.06.2020)

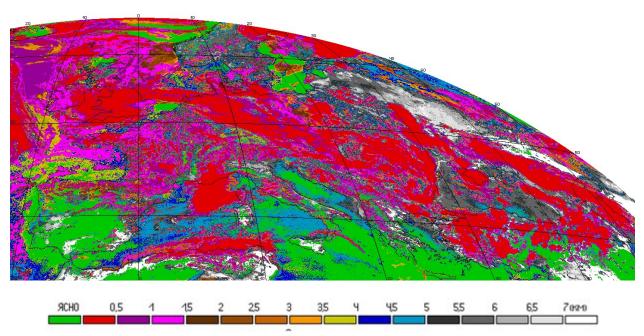


Рис. 5. Высота нижней границы облачности над поверхностью земли (SEVIRI/Meteosat-11, 18.06.2020, 11:45 BCB)

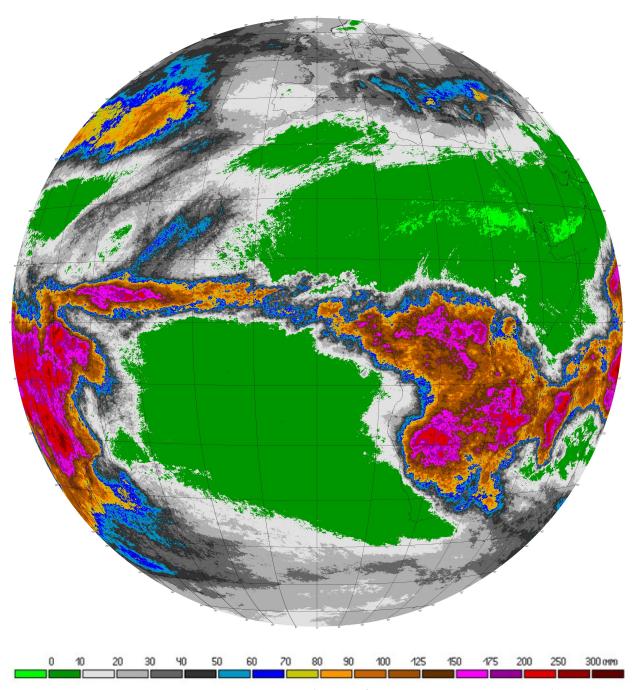
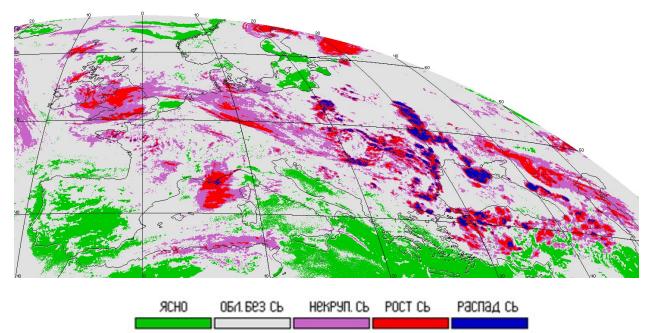



Рис. 6. Месячные суммы осадков (SEVIRI/Meteosat-11, январь 2021 г.)

Puc. 7. Стадии развития (степень опасности) Cb (SEVIRI/Meteosat-11, 18.06.2020, 11:45 ВСВ)

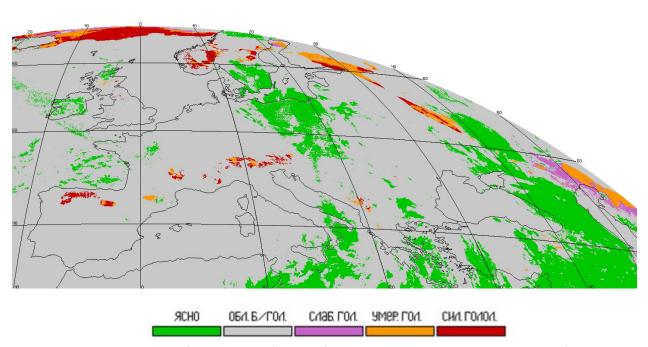


Рис. 8. Гололёд/гололедица (SEVIRI/Meteosat-11, 20.12.2019, 11:45 BCB)

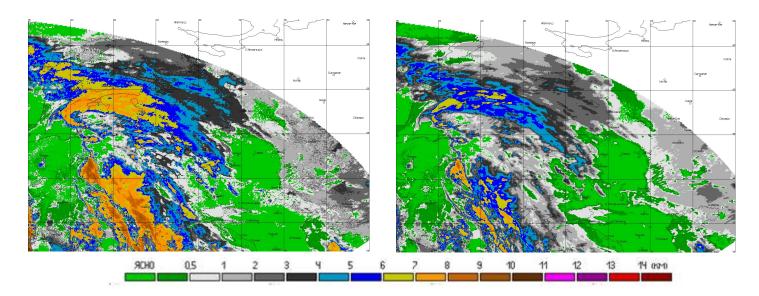


Рис. 9. Общая (слева) и реальная (справа) толщины облачного слоя (SEVIRI/Meteosat-11, 20.12.2019, 11:45 BCB). Примечание. Общая толщина — это разница между основанием облака и высотой ВГО, реальная толщина — это общая толщина без безоблачных прослоек

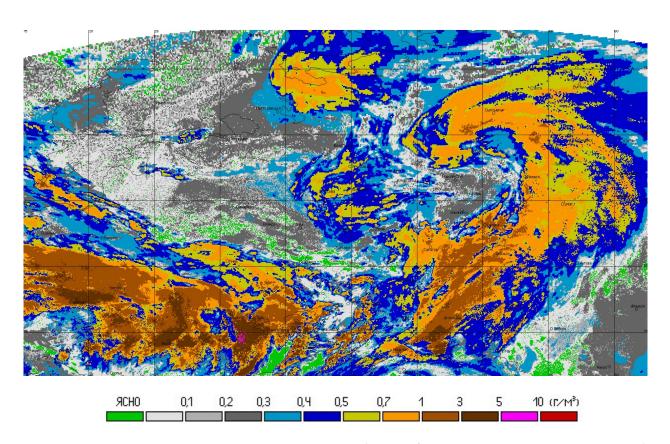


Рис. 10. Максимальная водность облачного слоя (SEVIRI/Meteosat-8, 3.02.2020, 11:45 BCB)

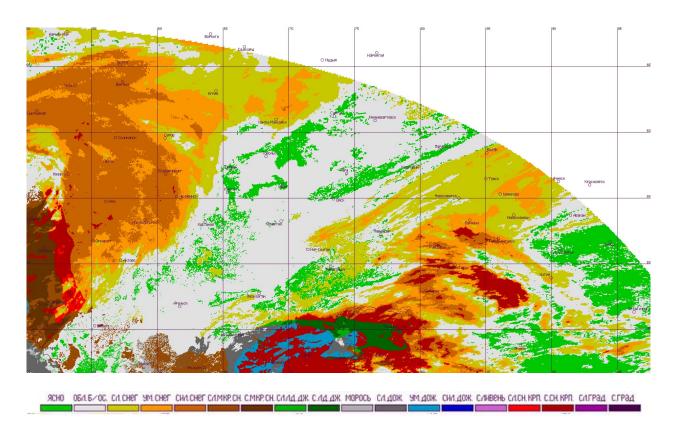


Рис. 11. Тип осадков у поверхности земли (SEVIRI/Meteosat-8, 3.02.2020, 11:45 BCB)

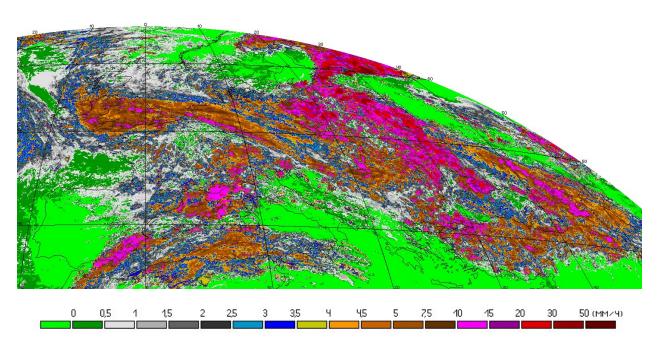


Рис. 12. Средняя за сутки интенсивность осадков (только во время их выпадения) (SEVIRI/Meteosat-11, 18.06.2020)